
1.1 Virial theorem  The Li atom has a nucleus with a +3e positive charge, which is 
surrounded by a full 1s shell with two electrons, and a single valence electron in the outer 2s 
subshell. The atomic radius of the Li atom is about 0.17 nm. Using the Virial theorem, and 
assuming that the valence electron sees the nuclear +3e shielded by the two 1s electrons, that 
is, a net charge of +e, estimate the ionization energy of Li (the energy required to free the 2s 
electron). Compare this value with the experimental value of 5.39 eV. Suppose that the actual 
nuclear charge seen by the valence electron is not +e but a little higher, say +1.25e, due to the 
imperfect shielding provided by the closed 1s shell. What would be the new ionization energy? 
What is your conclusion? 

 
Solution 

First we consider the case when the outermost valence electron can see a net charge of +e. 
From Coulomb’s law we have the potential energy 
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 = 1.354  10-18 J or -

8.46 eV 

Virial theorem relates the overall energy, the average kinetic energy KE , and average potential 
energy  PE  through the relations 

 KEPEE        and      PEKE
2

1
  

Thus using Virial theorem, the total energy is  

  eV46.85.0
2

1
 PEE  = - 4.23 eV 

The ionization energy is therefore 4.23 eV. Now we consider the second case where electron 
the sees +1.25e due to imperfect shielding. Again the Coulombic PE between +e and +1.25e 
will be  

  
0000

21

r4π

ee

r4π

QQ
PE


))(1.25( 

  

        
m)10)(0.17Fm10(854

C)10(1.61.25
9112

219









π

= 1.692  10-18 J or 10.58 

eV 
The total energy is, 

  eV29.5
2

1
 PEE  

 The ionization energy, considering imperfect shielding, is 5.29 eV. This value is in 
closer agreement with the experimental value. Hence the second assumption seems to be 
more realistic 
 



1.5 The covalent bond  Consider the H2 molecule in a simple way as two touching H 
atoms as depicted in Figure 1.77. Does this arrangement have a lower energy than two 
separated H atoms?  Suppose that electrons totally correlate their motions so that they move 
to avoid each other as in the snapshot in Figure 1.77. The radius ro of the hydrogen atom is 
0.0529 nm. The electrostatic potential energy PE of two charges Q1 and Q2 separated by a 
distance r is given by Q1Q2/(4or). Using the Virial Theorem as in Example 1.1, consider 
the following: 

a.   Calculate the total electrostatic potential energy (PE) of all the charges when they are 
arranged as shown in Figure 1.77. In evaluating the PE of the whole collection of charges 
you must consider all pairs of charges and, at the same time, avoid double counting of 
interactions between the same pair of charges. The total PE is the sum of the following: 
electron 1 interacting with the proton at a distance ro on the left, proton at ro on the right, 
and electron 2 at a distance 2ro + electron 2 interacting with a proton at ro and another 
proton at 3ro + two protons, separated by 2ro, interacting with each other. Is this 
configuration energetically favorable? 

b.   Given that in the isolated H-atom the PE is 2 (-13.6 eV), calculate the change in PE in 
going from two isolated H-atoms to the H2 molecule. Using the Virial theorem, find the 
change in the total energy and hence the covalent bond energy. How does this compare 
with the experimental value of 4.51 eV? 

 

 

 

 

 

 

 Figure 1.77 

 

Solution 

a. Consider the PE of the whole arrangement of charges shown in the figure. In evaluating 
the PE of all the charges, we must avoid double counting of interactions between the same 
pair of charges. The total PE is the sum of the following: 

Electron 1 interacting with the proton at a distance ro on the left, with the proton at ro 
on the right and with electron 2 at a distance 2ro 

 + Electron 2 on the far left interacting with a proton at ro and another proton at 3ro  

 + Two protons, separated by 2ro, interacting with each other 
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Substituting and calculating, we find PE = -1.0176  10-17 J or -63.52 eV 

The negative PE for this particular arrangement indicates that this arrangement of charges is 
indeed energetically favorable compared with all the charges infinitely separated (PE is then 
zero). 

b. The potential energy of an isolated H-atom is -2 13.6 eV or -27.2 eV. The difference 
between the PE of the H2 molecule and two isolated H-atoms is, 

 PE =  - (63.52) eV - 2(-27.2) eV=9.12eV 

We can write the last expression above as the change in the total energy. 
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 This change in the total energy is negative. The H2 molecule has lower energy than 
two H-atoms by 4.56 eV which is the bonding energy. This is very close to the experimental 
value of 4.51 eV. (Note: We used a ro value from quantum mechanics - so the calculation was 
not totally classical) 
 

1.6 Ionic bonding and CsCl  The potential energy E per Cs+-Cl− pair within the CsCl 
crystal depends on the interionic separation r in the same fashion as in the NaCl crystal, 
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     Energy per ion pair in ionic 

crystals   [1.50]                 
where for CsCl, M = 1.763, B = 1.19210-104 J m9 or 7.44210-5 eV (nm) 9 and m = 9. Find the 
equilibrium separation (ro) of the ions in the crystal and the ionic bonding energy, that is, the 
ionic cohesive energy; and compare the latter value to the experimental value of 657 kJ mol-1. 
Given the ionization energy of Cs is 3.89 eV and the electron affinity of Cl (energy released 
when an electron is added) is 3.61 eV, calculate the atomic cohesive energy of the CsCl crystal 
as joules per mole. 
 
Solution 

Bonding will occur when potential energy E(r) is minimum at r = r0 corresponding to the 
equilibrium separation between Cs+ and Cl− ions. Thus, differentiating E(r) and setting it 
equal to zero at r = ro we have 
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Thus substituting the appropriate values we have 
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   ro = 3.57  10-10 m or 0.357 nm. 
 
The minimum energy is the energy at r = ro, that is 
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               = − 6.32 eV per ion pair, or 3.16 eV per ion.  

The amount of energy required to break up Cs+-Cl− pair into Cs+ and Cl− ions = 6.32 eV per 
pair of ions. 
The corresponding ionic cohesive energy is 
  Ecohesive = (6.32 eV)(1.6  10-19 J eV-1)(6.022 10-23 mol-1)  

     = 610 kJ mol─1 of Cs+Cl- ion pairs or 610 kJ mol─1 of Cs+ ions and 
Cl− ions.  

(Not far out from the experimental value given the large numbers and the high index, m = 9, 
involved in the calculations.) 
 
The amount of energy required to remove an electron from Cl− ion = 3.61 eV. 
The amount of energy released when an electron is put into the Cs+ ion = 3.89 eV. 
Bond Energy per pair of Cs-Cl atoms = 6.32 eV + 3.61 eV – 3.89 eV = 6.04 eV  
Atomic cohesive energy in kJ/mol is,  
   Ecohesive = (6.04 eV)(1.6  10-19 J eV-1)(6.022 1023 mol-1)  
     = 582 kJ mol─1 of Cs or Cl atom (i.e. per mole of Cs-Cl atom 
pairs) 
     = 291 kJ mol─1 of atoms 



       
Author's Note: There is a selected topic entitled "Bonding" in the Chapter 1 folder in the 
textbook's CD where the bonding energy is calculated more accurately by taking a more 
realistic energy curve. The above calculation is similar to that given in Alan Walton, Three 
Phases of Matter (2nd Edition), Oxford University Press, 1983 (pp. 258-259) 
 
Author's Note to the Instructors: Various books and articles report different values for B and 
m, which obviously affect the calculated energy; ro is less affected because it requires the 
(m−1)th root of mB. Richard Christman (Introduction to Solid State Physics, Wiley, 1988) in 
Table 5-1 gives, m = 10.65 and B = 3.44  10120, quite different than values here, which are 
closer to values in Alan Walton's book. The experimental value of 657 kJ mol-1 for the ionic 
cohesive energy (the ionic lattice energy) is from  
T. Moeller et al, Chemistry with Inorganic Qualitative Analysis, Second Edition, Academic 
Press, 1984) p. 413, Table 13.5. 
 
 Some authors use the term molecular cohesive energy to indicate that the crystal is 
taken apart to molecular units e.g. Cs+Cl−, which would correspond to the ionic cohesive 
energy here. Further, most chemists use "energy per mole" to imply energy per chemical unit, 
and hence the atomic cohesive energy per mole would usually refer to energy be per Cs and 
Cl atom pairs. Some authors refer to the atomic cohesive energy per mole as cohesive energy 
per mole of atoms, independent of chemical formula. 
 

1.10  Van der Waals bonding  Below 24.5 K, Ne is a crystalline solid with an FCC 
structure. The interatomic interaction energy per atom can be written as 
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where  and  are constants that depend on the polarizability, the mean dipole moment, and 
the extent of overlap of core electrons. For crystalline Ne,  = 3.121  10-3 eV and  = 0.274 
nm. 

a.  Show that the equilibrium separation between the atoms in an inert gas crystal is given by 
ro =    (1.090). What is the equilibrium interatomic separation in the Ne crystal? 

b.   Find the bonding energy per atom in solid Ne. 

c.   Calculate the density of solid Ne (atomic mass = 20.18). 

 

Solution 

a. Let E = potential energy and x = distance variable between the atoms. The energy E is 
given by 
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The force F on each atom is given by 
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When the atoms are in equilibrium, this net force must be zero. Using ro to denote 
equilibrium separation,  
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  ro = 1.090 

For the Ne crystal,  = 2.74  10-10 m and  = 0.003121 eV. Therefore, 

  ro = 1.090(2.74  10-10 m) = 2.99  10-10 m for Ne.  

 b. Calculate energy per atom at equilibrium: 
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  E(ro) = ─ 4.30  10-21 or ─0 .0269 eV 

Therefore the bonding energy in solid Ne is 0.027 eV per atom. 

c. To calculate the density, remember that the unit cell is FCC, and density = (mass of atoms 
in the unit cell) / (volume of unit cell). There are 4 atoms per FCC unit cell, and the atomic 
mass of Ne is 20.18 g/mol. (See Figure 1Q7-1) 
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Figure 1Q7-1: Left: An FCC unit cell with close-packed spheres. Right: Reduced-sphere 
representation of the FCC unit cell. Examples: Ag, Al, Au, Ca, Cu, γ-Fe (>912 °C), Ni, Pd, 

Pt, Rh. 

 Since it is an FCC crystal structure, let a = lattice parameter (side of cubic cell) and R 
= radius of atom. The shortest interatomic separation is ro = 2R (atoms in contact means 
nucleus to nucleus separation is 2R (see Figure 1Q7-1). 

  R = ro/2 

and  2a2 = (4R)2 
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  a = 4.228  10-10 m or 0.423 nm 

Therefore, the volume (V) of the unit cell is: 

  V = a3 = (4.228  10-10 m)3 = 7.558  10-29 m3 

The mass (m) of 1 Ne atom in grams is the atomic mass (Mat) divided by NA, because NA 

number of atoms have a mass of Mat. 

  m = Mat / NA 

  
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There are 4 atoms per unit cell in the FCC cell. The density () can then be found by: 

   = (4m) / V = [4  (3.351  10-26 kg)] / (7.558  10-29 m3)  

   = 1774 kg/m3 

In g/cm3 this density is: 
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The density of solid Ne is 1.77 g cm-3.  

Author's Note: The experimental value for a at 4 K is 0.44 nm. The calculated value is close. 

 

 

 



1.31 BCC and FCC crystals 

a.   Molybdenum has the BCC crystal structure, has a density of 10.22 g cm-3 and an atomic 
mass of 95.94 g mol-1. What is the atomic concentration, lattice parameter a, and atomic 
radius of molybdenum? 

b.   Gold has the FCC crystal structure, a density of 19.3 g cm-3 and an atomic mass of 
196.97 g mol-1. What is the atomic concentration, lattice parameter a, and atomic radius 
of gold? 

 

Solution 

a. Since molybdenum has BCC crystal structure, there are 2 atoms in the unit cell. The 
density is  
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Solving for the lattice parameter a we receive 
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The Atomic concentration is 2 atoms in a cube of volume a3, i.e. 
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For a BCC cell, the lattice parameter a and the radius of the atom R are in the following 
relation (listed in Table 1.3): 
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b. Gold has the FCC crystal structure, hence, there are 4 atoms in the unit cell (as shown in 
Table 1.3). 

The lattice parameter a is 
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The atomic concentration is 
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For an FCC cell, the lattice parameter a and the radius of the atom R are in the following 
relation (shown in Table 1.3): 
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1.33 Planar and surface concentrations  Niobium (Nb) has the BCC crystal with a 
lattice parameter a = 0.3294 nm. Find the planar concentrations as the number of atoms per 
nm2 of the (100), (110) and (111) planes. Which plane has the most concentration of atoms 
per unit area? Sometimes the number of atoms per unit area nsurface on the surface of a crystal 
is estimated by using the relation nsurface = nbulk

2/3 where nbulk is the concentration of atoms in 
the bulk. Compare nsurface values with the planar concentrations that you calculated and 
comment on the difference. [Note: The BCC (111) plane does not cut through the center atom 
and the (111) has one-sixth of an atom at each corner.] 

 

Solution 

Planar concentration (or density) is the number of atoms per unit area on a given plane in the 
crystal. It is the surface concentration of atoms on a given plane. To calculate the planar 
concentration n(hkl) on a given (hkl) plane, we consider a bound area A. Only atoms whose 
centers lie on A are involved in the calculation of n(hkl). For each atom, we then evaluate what 
portion of the atomic cross section cut by the plane (hkl) is contained within A.  

For the BCC crystalline structure the planes (100), (110) and (111) are drawn in Figure 
1Q24-1. 

 

Figure 1Q24-1: (100), (110), (111) planes in the BCC crystal 
 

Consider the (100) plane.  

Number of atoms in the area a  a, which is the cube face = (4 corners)  (1/4th atom at 
corner) = 1. 

Planar concentration is 
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The most populated plane for BCC structure is (110). 

Number of atoms in the area a  a 2  defined by two face-diagonals and two cube-sides 

  = (4 corners)  (1/4th atom at corner) + 1 atom at face center = 2 

Planar concentration is 
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 The plane (111) for the BCC structure is the one with rarest population. The area of 

interest is an equilateral triangle defined by face diagonals of length 2a  (see Figure 1Q24-

1). The height of the triangle is 
2
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atom at a corner only contributes a fraction (60/360=1/6) to this area. 

So, the planar concentration is 
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For the BCC structure there are two atoms in unit cell and the bulk atomic concentration is 
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           = 5.596  1028 atoms m-3 

and the surface concentration is 

     3
2

328
3

2

10596.5  mnn bulksurface  = 1.463  1019 atoms m-2 

1.34 Diamond and zinc blende  Si has the diamond and GaAs has the zinc blende 
crystal structure. Given the lattice parameters of Si and GaAs, a = 0.543 nm and a = 0.565 
nm, respectively, and the atomic masses of Si, Ga, and As as 28.08, 69.73 g/mol, and 74.92, 
respectively, calculate the density of Si and GaAs. What is the atomic concentration (atoms 
per unit volume) in each crystal? 

 

Solution 

Referring to the diamond crystal structure in Figure 1Q25-1, we can identify the following 
types of atoms 

   8 corner atoms labeled C,  

  6 face center atoms (labeled FC) and  

  4 inside atoms labeled 1,2,3,4. 

The effective number of atoms within the unit cell is: 



 (8 Corners)  (1/8 C-atom) + (6 Faces)  (1/2 FC-atom) + 4 atoms within the cell (1, 2, 
3, 4) = 8 

 

Figure 1Q25-1: The diamond crystal structure. 

The lattice parameter (lengths of the sides of the unit cell) of the unit cell is a. Thus the 
atomic concentration in the Si crystal (nSi) is 
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If Mat is the atomic mass in the Periodic Table then the mass of the atom (mat) in kg is  

  mat = (10-3 kg/g)Mat/NA      (1) 

where NA is Avogadro’s number. For Si, Mat = MSi = 28.09 g/mol, so then the density of Si is  

   = (number of atoms per unit volume)  (mass per atom) = nSi mat 
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In the case of GaAs, it is apparent that there are 4 Ga and 4 As atoms in the unit cell. The 
concentration of Ga (or As) atoms per unit volume (nGa) is 
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n = 2.22  1028 m-3 

Total atomic concentration (counting both Ga and As atoms) is twice nGa. 

  nTotal = 2nGa = 4.44  1028 m-3 

 There are 2.22  1028 Ga-As pairs per m3. We can calculate the mass of the Ga and As 
atoms from their relative atomic masses in the Periodic Table using Equation (1) with Mat = 
MGa = 69.72 g/mol for Ga and Mat = MAs = 74.92 g/mol for As. Thus, 
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1.37 Si and SiO2 

a.   Given the Si lattice parameter a = 0.543 nm, calculate the number of Si atoms per unit 
volume, in nm-3. 

b.   Calculate the number of atoms per m2 and per nm2 on the (100), (110) and (111) planes 
in the Si crystal as shown on Figure 1.75. Which plane has the most number of atoms per 
unit area? 

c.   The density of SiO2 is 2.27 g cm-3. Given that its structure is amorphous, calculate the 
number of molecules per unit volume, in nm-3. Compare your result with (a) and comment 
on what happens when the surface of an Si crystal oxidizes. The atomic masses of Si and 
O are 28.09 and 16, respectively. 

 

Figure 1.75: Diamond cubic crystal structure and planes. Determine what  

portion of a black-colored atom belongs to the plane that is hatched. 

 

Solution 

a. Si has the diamond crystal structure with 8 atoms in the unit cell, and we are given the 
lattice parameter a = 0.543  10-9 m and atomic mass Mat = 28.09  10-3 kg/mol. The 
concentration of atoms per unit volume (n) in nm-3 is therefore: 
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If desired, the density  can be found as follows: 
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b. The (100) plane has 4 shared atoms at the corners and 1 unshared atom at the center. The 
corner atom is shared by 4 (100) type planes. Number of atoms per square nm of (100) plane 
area (n) is shown in Fig. 1Q28-1: 



 

Figure 1Q28-1: The (100) plane of the diamond crystal structure. 

The number of atoms per nm2, n100, is therefore: 
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  n100 = 6.78 atoms/nm2 or 6.78  1018 atoms/m2  

The (110) plane is shown below in Fig. 1Q28-2. There are 4 atoms at the corners and shared 
with neighboring planes (hence each contributing a quarter), 2 atoms on upper and lower 
sides shared with upper and lower planes (hence each atom contributing 1/2) and 2 atoms 
wholly within the plane. 

 

Figure 1Q28-2: The (110) plane of the diamond crystal structure. 

The number of atoms per nm2,  n110, is therefore: 
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  n110 = 9.59 atoms/nm2 or 9.59  1018 atoms/m2 

This is the most crowded plane with the most number of atoms per unit area. 

The (111) plane is shown below in Fig. 1Q28-3: 
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Figure 1Q28-3: The (111) plane of the diamond crystal structure 

The number of atoms per nm2, n111, is therefore: 
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  n111 = 7.83 atoms/nm2 or 7.83  1018 atoms/m2 

c. Given: 

Molar mass of SiO2:  Mat = 28.09  10-3 kg/mol + 2  16  10-3 kg/mol = 60.09  10-3 
kg/mol 

Density of SiO2:   = 2.27  103 kg m-3 

Let n be the number of SiO2 molecules per unit volume, then: 
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 Oxide has less dense packing so it has a more open structure. For every 1 micron of 
oxide formed on the crystal surface, only about 0.5 micron of the Si crystal is consumed 
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